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At present a number of mathematical models have been suggested and investigated for describing the 
behavior of metals under conditions of nonstationary high-rate strain. As a rule,use is made of continuum 
mechanics equations which are closed by relations of stress and strain tensors with thermodynamic and 
kinematic medium parameters. Methods for describing the spherical constituents of the corresponding tensors 
depending on specific volume and temperature parameters, or means of constructing equations of state are 
known and generally accepted [1]. Methods for describing deviator constituents of tensors or methods for 
constructing defining relations depend on the rheologic behavior of a solid body in the process of deformation. 
This accounts for the diversity of mathematical models used in phenomenological description of the resistance 
of impact-loaded materials to forming, and for the modifications of mathematical models of elastoplastic, 
viscoplastic, and relaxing media [2]. 

For a large class of problems of high-rate straining of metallic shells driven in one way or another toward 
the center or axis of symmetry, mathematical modeling of dynamic processes is carried out according to the 
scheme of nonstationary straining of a compressible viscoplastic medium in a region with free boundaries. 
The difficulties emerging in this case are due to the absence of reliable experimental data on the behavior of 
the dynamical yield limit as and the dynamical viscosity coefficient # for many metals in a wide range of the 
strain rates g __ 103-106 sec -1. In this paper we suggest a new technique for determining these characteristics 
of metals with the use of experiments on compressed cylindrical shells [3]. 

1. High-rate deformation of cylindrical shells is usually performed by explosion products (EP) of 
a high explosive (HE) located on their outer surface. As a rule, however, in these experiments the shells 
converge toward the symmetry axis and then fly apart [4] or there arise conditions leading to spallation of 
the shell [5] or to loss of its stability [6]. The possibilities of the method are substantially increased in the 
case of inertial axisymmetric compression of the shell at a relatively low initial velocity when its initial kinetic 
energy completely dissipates in the compression process, and the shell is stopped at a certain radius retaining 
its symmetric shape and integrity (absence of spalls). 

These conditions of shell compression can be provided by applying additional shields of thickness A2 
comparable to the thickness A1 of the shell. The shields are placed on the outer surface of the HE layer. 
This makes it possible to use HE layers of smaller thickness (A0 << A1, A2), i.e., to create loading conditions 
closer to instantaneous detonation, to press a shell under the conditions of inertial compression, and to greatly 
simplify the computational scheme for determining the shell's initial velocity [7, 8]. It can be stated that the 
initial kinetic energy E of these shells is completely transformed to the work of plastic deformation A*, i.e., 
to the work directed against the strength forces of the shell material, characterized by its dynamic yield limit 
as. Assuming the constancy of the yield limit (as = const) during the compression or plastic deformation of 
a shell and taking its material to be incompressible, we can define the value of A* by the relation [9] 

A * -  [R 2 in - a 2 In + (b 2 - a 2) in (1.1) 
- - g  ; z  b21' 
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where b is the outer and a the inner radii of the shell before loading; Rb is the outer and R = (R~ + a 2 - b2) 1/2 
the inner radius after loading. For practical calculations it is more convenient to use this formula in the form 

= -- a 2 _ l )  In ~R~ a 2 _ l )  a 2 a2]. A* ~rasb 2 [R~ In R~ [ R~ + + + ~- In 

Note that there are certain reasons in assuming as to be constant in this case, as distinct, e.g., from the 
method of expanding rings [10], . Firstly, as the shell is being compressed (particularly at the first stage 
of the process), the plastic deformation rate remains constant, ~ = V / r . ,  since the shell velocity V and its 
mass center radius r .  = ((a s + bS)/2) 1/2 decrease concurrently. Secondly, during the shell compression, at the 
stage of stopping, the processes of changes of resistance of a material to deformation, due to decreasing ~ and 
increasing strain hardening, have opposite signs. This circumstance leads to partial compensation and to a 
decrease in the effect of these factors on resistance to deformation. 

In the absence of energy losses on fracture and bending deformations, with regard to smallness of mass 
m0 of the HE layer as compared with the masses ml of a shell and ms of a shield, the initial kinetic energy 
E1 of a shell can be determined from conservation laws for energy E and impulse I. For the closed shield-HE 
layer--shell system 

E0 = E1 + Z2, I1 = I2. (1.2) 

Taking into account that E = IS /2m,  we find 

rn2 
El = E0 = ~E0. 

ml A- m2 

Here ~ is the energy take-off coefficient; Eo = moD2/2 (n  2 - 1); D is the detonation rate; n the polytropic 
exponent of the EP. 

In the general case where the mass of the HE, as compared to that of a shield or a shell, cannot be 
neglected, in solving the problem of the energy take-off by a shell, account must be taken of the HE mass. 
This amounts to taking into account the kinetic energy and the impulse of the EP moving toward the shell 
and the shield whose velocities are limited by the corresponding velocities of the shell and the shield. The 
equations of the conservation laws (1.2) take the form 

E0 = E1 + E EP + E2 + E [  P, I1 + I~ P = / 2  + I EP. (1.3) 

If we assume, just as in [11], that the distribution of the EP velocities along the radius is linear (Fig. 1), then 
the velocities can be written as 

Vb b ( R ~  R0 ~<r~<b, vEp - 

VA ( r - Ro ), A <~ r <<. Ro. 
VEp ~- A - -  R 0  

For cylindrical geometry the equation of continuity on the shell boundaries meets the condition Vaa = Vbb. 
Taking into account this and the "lacing" of the velocities of the shield and the shell on the A and b radii 
with those of the EP, we obtain expressions for the terms contained in (1.3) and write 

, ~rp0AoD2 ( A0) (1.4) 
E I = ~ , E 0 = ~ ,  ~--y--_~ b 1 + - ~ -  , 

where 

~ , =  I + P s l n ( B / A )  k + 
Pl In (b/a) 

k = 

1 poAo A / -1 ;  

) 

; B = b+  Ao + A2; 
A (3 p2A2 1) 1 

p- 0 + + 
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A = b+ A0 ; Pl, P2, p0 are the densities of the material of the shell, the shield and the HE layer, respectively. 
From the equality A* = El* and Eqs. (1.1)~ (1.4) we obtain the expression for the dynamic yield limit of the 
shell material: 

( A 0 )  x/-3poAoD2b i + - ~  ~, 
a, = (1.5) 

R21 �9 (h2-1)[R2ln~2-a21n-~'f-k(b2-a2) In b 2 ] 

For a thick-walled cylindrical converging shell the kinetic energy has the form [9] 

E1 = ~rpl(Vr) 2 In b .  (1.6) 
a 

Equating expressions (1.4) and (1.6) we determine the initial velocity of a shell and the strain rate of its 

material. For the shell wall center-of-mass radius r ,  = we write 

2~,p0A0b 1 + ~ -  

~4 = D (,,2 _ 1)p1(a2 + b2)in ( b / a )  ' (1.7) 

i V0 D 2 ~,p0A0b 1 + -~- (1.8) 
- r ,  - a2 + 7:1-77;1n(Tf  

Having thus determined c% and g, we can construct from the experimental data the relation as = as(g) 
and, in accordance with this dependence, calculate the dynamic viscosity coefficient of the shell material. In 
particular, for a cylindrical shell at as = a0 + (2# /v~)~  we have 

v~ das 
= T d~ " (1.9) 

The relations thus obtained are used below to process the experimental data on cylindrical shell 
compression with the aim of clarifying the theological properties of the shell material in the range ~ = 
103-3 �9 105 sec -1. 

2. In experiments conducted according to the scheme given in Fig. 2 we used cylindrical shells made 
of steel St. 3 and Armco iron in the as-delivered condition. On the lateral surface of a shell (specimen) of 
the metal 1 a layer 2 of HE charge was applied which was placed into a shield 3 rigidly bound with the 
specimen along the lateral surface. To eliminate any clearance the conjugate surfaces of the shell and shield 
had a slight taper along the cone element ~ 0.5-20; their surfaces finally had a class six clearance, and to 
secure a tight bearing between them and eliminate any clearance due to variations of HE layer thickness the 
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inner surface of the shield was wetted with condenser oil. The HE charge was detonated by means of the 
detonating cap 4 which initiated an additional HE charge 5 located on the technological plug 6 fitted to the 
end of the cylindrical specimen which made it possible to detonate the main HE charge concurrently over the 
entire circle [4]. 

The shield prevented the free scattering of the EP; as a result the pressure impulse shape in the 
specimen was transformed from triangular to nearly rectangular and this contributed to the elimination of 
spalling. In some experiments, where justified, no shield was used. The stability of the shell compression was 
attained by the appropriate choice of the relative shell thickness ~ = A1/b > &, where 5, is the critical 
relative shell thickness (percentage). When the shell thickness exceeded this value, the shell compression was 
stable. By virtue of the cylindrical symmetry of the experimental assemblies during the explosive compression 
of specimens no special steps had to be taken to conserve them for subsequent analysis (presence of spalling, 
shape symmetry, radius measurements, etc.). The shell radii before and after the compression (b, Rb) were 
measured in the cross section under study with a micrometer at ,-~ 10 points and then averaged. In the 
experiments we used plastic HE with A0 = 0.3-1.0 mm; P0 = 1.51 g/cm 3, D = 7.8 km/sec, and n = 3. 
The shells had the following standard sizes: O 6 x 1, 9 x 0.9, 14 x 0.9, 16 x 0.9, 21 x 2, 21 x 3, 45 x 3, 
45 • 5, 70 x 3 mm, while the ratio of the shell length to its diameter L/2b/> 5. The initial shell wall velocities 
varied from 45 to 800 m/sec due both to the variations in the thickness of the HE layer and to those in the 
thickness or material of the shield. This made it possible to realize the range of strain rate variation from 10 3 
to 3- 10 5 sec -1. The relative averaged strains e = ( b -  Rb)/b of the shells in the experiments varied from 1 to 
50%. 

As an illustration, in Fig. 3 are shown typical photographs of shells made of steel St.3 o 16 • 0.92 and 
9 x 0.93 mm before loading and the view of their middle cross section after loading at initial wall velocities 
of 640 and 730 m/sec, respectively. In Fig. 4 is presented for comparison a photograph of lead shell cross 
sections of O 42 x 6.3 mm after loading at initial velocities of 20.3, 36.3, and 56.6 m/sec. To prevent shells 
from spalling in this case, a 2.8 mm air clearance was introduced between the HE layer and the shell. The 
initial velocities of shell wall motion were determined experimentally. In Fig. 5 are plotted the dependences 
as = as(i) ,  derived from measured initial and final sizes of shells using relations (1.5), (1.6), and(1.8) for steel 
St. 3 and Armco iron. 

3. The course of the relationships as = as(i)  for steel St. 3 and Armco iron in the range of g = 
103-3 �9 105 sec -1 has a piecewise linear form. This relationship points to the viscoplastic character of behavior 
of metals during shell deformation, which is the reason for using relationship (1.9). In this case, in the vicinity of 
the value g ~ 104 sec -1 the the values of the dynamic viscosity coefficients vary from #1 = 6.7.10 -1 kg.sec/cm 2 
to #2 = 1.4.10 -2 kg. sec/cm 2 for steel St. 3 and from #1 = 3.4-10 -1 kg. sec/cm 2 to #2 = 4.8.10 -2 kg. sec/cm 2 
for Armco iron. 

Figure 5 shows the experimental results (dashed lines) obtained by G. V. Pisarenko et al. [12] on 
as(i) for annealed Armco iron at g ~< 5- 104 sec -1 under high-velocity rod tension on a set-up with a powder 
accelerator. Within this range of g variation the data we obtained during dynamic shell compression differ from 
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those of [12] by no more than 15%. In addition, G. V. Pisarenko et al. [12] have discovered and interpreted, in 
terms of dislocation dynamics, a characteristic break in the course of the relationship of as(i)  at g ~_ 104 sec -1 
observed both in Armco iron and in steel St. 45. We have observed a similar break at g __ 104 sec -1 in steel 
St. 3 and Armco iron. A comparison of values of as obtained for steel St. 3 and Armco iron at g = 103 sec -1 
with the data of [13] shows entirely satisfactory agreement. 

Thus, it may be concluded that the method we proposed for determining the dynamic yield limit in the 
range of g = 103-3 �9 105 sec -1 at comparatively low values of material compression (a = p/poo ~- 1) and, due to 
the specificity of behavior of metals in this range of g, of the dynamic viscosity coefficient makes it possible to 
obtain results which quantitatively and qualitatively agree with those obtained using other methods [12, 13]. 

In [14, 15] different methods of determining the dynamic yield limit of metals are described. Analysis 
shows that each of these methods is applicable, as a rule, within one or two orders of strain rate variation. With 
respect to the proposed method,* the range of variation of g can be widened, say, in the direction of increasing 
i, by the definition of i = Volt . ,  via an increase of the shell velocity and a decrease in its dimensions. We 
were able to compress shells made of steel St. 3 ~ 4 x 1 and 2 x 0.5 mm with i up to 2 �9 106 sec -1. There 
is a tendency for a sharper increase of crs in the range g = 3 �9 105-2 �9 106 sec -1 which in principle does not 
contradict the results of [15] for soft steel. However, for shells whose percentage amounts to 50% there emerge 
difficulties in defining the quantities as and i due to the small radius of a shell. Hence for Armco iron and 
steels the value i = (1-3) �9 105 see -1 should apparently be considered limiting. 

It can be noted that steel St. 3 and Armco iron used as a material for specimens (classed with these 
are a number of other marks of steel, titanium alloys, and uranium) have relatively high values of shear 
strength, spall strength, and plasticity. This would secure stable and compact compression of specimens at 
shell strain values in the range of 1 to 50% which made it possible to realize a wide range of variation of 
g = 1 0 a - 3  �9 10 5 s ec  - a .  For a number of metals, such as copper, magnesium, aluminum, and its alloys, whose 
shear and spall strengths are small, there arise difficulties in compressing the shell to a certain fixed stopping 
radius by using the scheme given in Fig. 2 with the shell shape retaining its stability and integrity. One 
can overcome these difficulties by using energy sources that are weaker and have smaller critical diameters 
of HE (e.g., liquid HE) or other energy sources, e.g., laser radiation. Another way of overcoming the above 
difficulties is introducing an air clearance between the layer of plastic HE and a tested shell. The application 
of the latter technique permitted us, e.g., to measure o's even in lead (see Fig. 4). The values of crs for 
g = (1.1-3.1)- 103 see -1 amounted to 23-30 MPa, which is in satisfactory agreement with the data of [17] for 
these strain rates. 

�9 Note that in view of the cylindrical geometry of the specimens the method is free of the limitations typical 
of, say, quasi-static methods (rod specimens) due to the effects of radial inertia [16]. 
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